120. Cyclic Amidines. Part VI.* 5- and 7-Substituted 2-Amino-4-hydroxyquinolines.

By R. Hardman and M. W. Partridge.

The formation of 5 - and 7 -substituted 2 -amino- 4 -hydroxyquinolines by the interaction of ethyl cyanoacetate and the benzenesulphonates of metasubstituted arylamines has been examined. From these salts of m-toluidine and of m-chloroaniline, both isomerides were produced, whereas the salts of m-anisidine and of m-aminophenol gave only 7 -substituted aminohydroxyquinolines.

In Part II ${ }^{1}$ we described the production of 2 -amino-4-hydroxyquinolines by interaction of ethyl cyanoacetate or an α-substituted ethyl cyanoacetate with an arylammonium arenesulphonate. We have now examined the reaction between meta-substituted aryl-

(I) ammonium benzenesulphonates and ethyl cyanoacetate in which either a 5- or a 7 -substituted quinoline can be formed. By this reaction, the benzenesulphonates of m-toluidine and m-chloroaniline furnished both isomerides ($\mathrm{I} ; \mathrm{R}=\mathrm{Me}$ or $\mathrm{Cl}, \mathrm{R}^{\prime}=\mathrm{H}$ and $\mathrm{R}^{\prime}=\mathrm{Me}$ or $\mathrm{Cl}, \mathrm{R}=\mathrm{H}$), the major component of the mixture, as shown by orientation, being the 7 -substituted quinoline. From m-aminophenol and m-anisidine salts, only 7 -substituted quinolines ($\mathrm{I} ; \mathrm{R}^{\prime}=\mathrm{OH}$ or $\mathrm{OMe}, \mathrm{R}=\mathrm{H}$) were formed.

Degradations of 2 -amino-4-hydroxyquinoline and its derivatives were studied as models for the orientation of its 5- and 7-substituted derivatives. Its hydrolysis to 2:4dihydroxyquinoline was effected in only moderate yield by potash fusion. Oxidation by permanganate furnished a mixture from which 4-hydroxyquinazoline and 2:4-dihydroxyquinazoline were isolated. The formation of the quinazoline ring apparently involved an initial oxidative fission of the $3: 4$-bond of the quinoline, followed by a recyclisation of the resulting aminodicarboxylic acid; in agreement, oxalylanthranilic acid, previously recognised as an oxidation product of 4-hydroxyquinoline, ${ }^{2}$ was also isolated from the oxidation products. The heterocyclic ring exhibited a resistance to reduction similar to that reported for other 4-hydroxyquinolines; ${ }^{3}$ the product of reduction with Raney alloy and alkali ${ }^{4}$ was evidently 2 -amino-5:6:7:8-tetrahydro-4-hydroxyquinoline.

3-Bromo-2:4-dihydroxyquinoline readily afforded 2:4-dihydroxyquinoline on reduction with Raney alloy and alkali, ${ }^{5}$ but with $2: 4$-dichloroquinolines the yields of reduction products were low. In the latter cases, halogen was removed by tin and hydrochloric acid. ${ }^{6}$

Peroxide oxidation of quinisatin oxime, produced by treatment of 2 -amino-4-hydroxyquinoline with nitrous acid, ${ }^{1}$ was unsatisfactory, since it gave only $2: 4$-dihydroxy-3nitroquinoline. No recognisable product was obtained when degradation of this oxime via a Beckmann transformation was attempted.

For orientation 2-amino-4-hydroxy-7-methylquinoline ($\mathrm{I} ; \mathrm{R}^{\prime}=\mathrm{Me}, \mathrm{R}=\mathrm{H}$) was brominated to its 3-bromo-derivative (II; $\mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{NH}_{2}, \mathrm{R}^{3}=\mathrm{Br}, \mathrm{R}^{4}=\mathrm{OH}$) which with nitrous acid furnished the bromodihydroxyquinoline (II; $\mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=$ $\mathrm{R}^{4}=\mathrm{OH}, \mathrm{R}^{3}=\mathrm{Br}$); removal of the bromine by reduction with Raney alloy ${ }^{5}$ gave the dihydroxyquinoline ($\mathrm{II} ; \mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{R}^{4}=\mathrm{OH}, \mathrm{R}^{3}=\mathrm{H}$), and the dichloroquinoline ($\mathrm{II} ; \mathrm{R}^{\mathbf{1}}=\mathrm{Me}, \mathrm{R}^{\mathbf{2}}=\mathrm{R}^{4}=\mathrm{Cl}, \mathrm{R}^{3}=\mathrm{H}$), obtained by interaction of this

[^0]dihydroxyquinoline and phosphorus oxychloride, was reduced to $1: 2: 3: 4$-tetrahydro-7methylquinoline (III; $\mathrm{R}^{\mathbf{1}}=\mathrm{Me}$). This was characterised by comparison of its benzoyl derivative, hydrochloride, and picrate with authentic specimens. The second methylquinoline formed from m-toluidine was therefore the 5 -methyl derivative.

2-Amino-4-hydroxy-7-methoxyquinoline ($\mathrm{I} ; \mathrm{R}^{\prime}=\mathrm{MeO}, \mathrm{R}=\mathrm{H}$) with phosphorus oxychloride yielded a chloro-compound (II; $\mathrm{R}^{\mathbf{1}}=\mathrm{MeO}, \mathrm{R}^{2}=\mathrm{NH}_{2}, \mathrm{R}^{3}=\mathrm{H}, \mathrm{R}^{4}=\mathrm{Cl}$), the amino-group of which was replaced by hydroxyl on treatment with nitrous acid. This chlorohydroxyquinoline (II; $\mathrm{R}^{1}=\mathrm{MeO}, \mathrm{R}^{2}=\mathrm{OH}, \mathrm{R}^{3}=\mathrm{H}, \mathrm{R}^{4}=\mathrm{Cl}$) was converted via the dichloroquinoline ($\mathrm{II} ; \mathrm{R}^{1}=\mathrm{MeO}, \mathrm{R}^{2}=\mathrm{R}^{4}=\mathrm{Cl}, \mathrm{R}^{3}=\mathrm{H}$) into 1:2:3:4-tetra-hydro-7-methoxyquinoline (III; $\mathrm{R}^{1}=\mathrm{MeO}$) which afforded a benzoyl derivative, a hydrochloride, and a picrate identical with those derived from authentic 7-methoxyquinoline.

(II)

(III)

(IV)

(V)

The orientation of the hydroxyquinoline prepared from m-aminophenol ($\mathrm{I} ; \mathrm{R}^{\prime}=\mathrm{OH}$, $\mathrm{R}=\mathrm{H}$) followed from that of its orientated homologue (I ; $\mathrm{R}^{\prime}=\mathrm{OMe}, \mathrm{R}=\mathrm{H}$), since the product of demethylation of the latter furnished a base, hydrochloride, and picrate identical with those derived from the former. The identical orientation of the quinolines produced from m-anisidine and m-aminophenol was confirmed by demethylation of 2 -amino-4-chloro-7-methoxyquinoline (II; $\mathrm{R}^{1}=\mathrm{MeO}, \mathrm{R}^{2}=\mathrm{NH}_{2}, \mathrm{R}^{3}=\mathrm{H}, \mathrm{R}^{4}=\mathrm{Cl}$) to the same chlorohydroxyquinoline (II; $\mathrm{R}^{1}=\mathrm{OH}, \mathrm{R}^{2}=\mathrm{NH}_{2}, \mathrm{R}^{3}=\mathrm{H}, \mathrm{R}^{4}=\mathrm{Cl}$) as was formed when the aminodihydroxyquinoline ($\mathrm{I} ; \mathrm{R}^{\prime}=\mathrm{OH}, \mathrm{R}=\mathrm{H}$) was treated with phosphorus oxychloride. Further, hydrolysis of this chlorohydroxyquinoline (II; $\mathrm{R}^{\mathbf{1}}=\mathrm{OH}, \mathrm{R}^{\mathbf{2}}=$ $\mathrm{NH}_{2}, \mathrm{R}^{3}=\mathrm{H}, \mathrm{R}^{4}=\mathrm{Cl}$) furnished the original dihydroxyquinoline ($\mathrm{I} ; \mathrm{R}^{\prime}=\mathrm{OH}, \mathrm{R}=\mathrm{H}$). The chlorohydroxyquinoline (II; $\mathrm{R}^{\mathbf{1}}=\mathrm{OH}, \mathrm{R}^{2}=\mathrm{NH}_{2}, \mathrm{R}^{3}=\mathrm{H}, \mathrm{R}^{4}=\mathrm{Cl}$) could not be converted into the dichloroquinoline (II; $\mathrm{R}^{1}=\mathrm{R}^{4}=\mathrm{Cl}, \mathrm{R}^{2}=\mathrm{NH}_{2}, \mathrm{R}^{3}=\mathrm{H}$) for comparison with the compound formed by interaction of 2 -amino-7-chloro-4-hydroxyquinoline ($\mathrm{I} ; \mathrm{R}^{\prime}=\mathrm{Cl}, \mathrm{R}=\mathrm{H}$) and phosphorus oxychloride.

2-Amino-7-chloro-4-hydroxyquinoline ($\mathrm{I} ; \mathrm{R}^{\prime}=\mathrm{Cl}, \mathrm{R}=\mathrm{H}$) with nitrous acid gave 7-chloro-3:4-dihydro-2-hydroxy-3-hydroxyimino-4-oxoquinoline (IV), which on being boiled with sulphuric acid yielded 6 -chloroisatin (V). Analogous conversions of quinoline derivatives into isatin derivatives have been previously reported. ${ }^{7}$ This isatin derivative was smoothly oxidised by hydrogen peroxide to 4 -chloroanthranilic acid and the latter by deamination gave 4 -chlorobenzoic acid. The isomeric aminochlorohydroxyquinoline derived from m-chloroanilinium benzenesulphonate and ethyl cyanoacetate was accordingly the 5 -chloro-derivative.

Most of the quinoline derivatives described in this communication were examined for amœbacidal activity; none was observed.

Experimental

Oxidation of 2-Amino-4-hydroxyquinoline.-(i) 2-Amino-4-hydroxyquinoline (4 g.) in a solution of potassium hydroxide ($2 \cdot 8 \mathrm{~g}$.) in water (270 ml .) was treated at room temperature during 4 days with N -potassium permanganate (600 ml .). The suspension was filtered, concentrated, and neutralised with sulphuric acid. Amphoteric material was extracted from the precipitate with aqueous sodium hydroxide and reprecipitated; this on recrystallisation from ethanol gave 4-hydroxyquinazoline ($\mathbf{1} \cdot \mathbf{0} \mathrm{g} ., 27 \%$), m. p. and mixed m. p. $219-220^{\circ}$ [Found: $\mathrm{C}, 65 \cdot 8 ; \mathrm{H}, 4 \cdot 4 ; \mathrm{N}, 19 \cdot 2 \%$; M (ebullioscopic), 140 . Calc. for $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{ON}_{2}: \mathrm{C}, 65 \cdot 8 ; \mathrm{H}, 4 \cdot 1 ; \mathrm{N}$,

[^1]$19.2 \% ; M, 146]$; its picrate had m. p. and mixed m. p. 207-208. The mother-liquor from the isolation of the amphoteric material, after completion of the removal of manganese dioxide, concentration, and acidification, furnished hydrated oxalylanthranilic acid (0.5 g ., 10%), m. p. and mixed m. p. 195-196 (decomp.).
(ii) Water-soluble material obtained from an oxidation at $85-90^{\circ}$ for 30 min ., on being boiled for 90 min . with concentrated hydrochloric acid, gave as a water-soluble fraction 4-hydroxyquinazoline (0.5 g ., 14%), m. p. and mixed m. p. 219- 220°, and as a water-insoluble fraction, purified by sublimation in vacuo, 2:4-dihydroxyquinazoline (0.6 g ., 15%), plates, $\mathrm{m} . \mathrm{p}$. and mixed m. p. 355° (decomp.) (from ethyl acetate) (Found: C, 59.8 ; H, 3.7; N, 17.0 . Calc. for $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{O}_{2} \mathrm{~N}_{2}$: C, $59.3 ; \mathrm{H}, 3.7$; $\mathrm{N}, 17.3 \%$), $\lambda_{\text {max. }}$. (in EtOH) $217(\varepsilon 40,000$), $310 \mathrm{~m} \mu(\varepsilon$ 3400); authentic 2:4-dihydroxyquinazoline had $\lambda_{\text {max. }} 217(\varepsilon 42,600), 310 \mathrm{~m} \mu(\varepsilon 3600)$; the 3 -methyl derivative had m. p. and mixed m. p. 229-232 ${ }^{\circ}$.

2-Amino-5:6:7:8-tetrahydro-4-hydroxyquinoline.-A solution of 2-amino-4-hydroxyquinoline (12 g .) in 10% aqueous sodium hydroxide (360 ml .) was treated at 85° during 7 hr . with Raney alloy (51 g.), stirred for a further 2 hr ., and filtered. The precipitate obtained by neutralisation was freed from 2 -amino-4-hydroxyquinoline by the addition of chloroform to a methanol solution and then gave the tetrahydroquinoline ($6 \mathrm{~g} ., 49 \%$) as prisms, m. p. 335$336^{\circ}$ (decomp.), from aqueous ethanol (Found: $\mathrm{N}, \mathbf{1 6 \cdot 9} . \mathrm{C}_{9} \mathrm{H}_{12} \mathrm{ON}_{2}$ requires $\mathrm{N}, 17 \cdot 1 \%$). This compound was insoluble in aqueous sodium carbonate, soluble in aqueous sodium hydroxide, and gave a ferric colour similar to that of 2 -amino-4-hydroxyquinoline, but on pyrolysis evolved ammonia less readily. Its picrate, needles from aqueous ethanol, had m. p. 252° (decomp.) (Found: C, $\mathbf{4 5 \cdot 8} ; \mathrm{H}, 4.1 ; \mathrm{N}, 17.5 . \mathrm{C}_{15} \mathrm{H}_{15} \mathrm{O}_{8} \mathrm{~N}_{5}$ requires $\mathrm{C}, 45 \cdot 8 ; \mathrm{H}, 3.8 ; \mathrm{N}, 17.8 \%$); the hydrochloride formed prisms, m. p. 244-246 (decomp.), from hydrochloric acid (Found: $\mathrm{C}, 53.7 ; \mathrm{H}, 6.2 . \mathrm{C}_{9} \mathrm{H}_{13} \mathrm{ON}_{2} \mathrm{Cl}$ requires $\mathrm{C}, 53.8 ; \mathrm{H}, 6.5 \%$). With nitrous acid, it gave 3:4:5:6:7:8-hexahydro-2-hydroxy-3-hydroxyimino-4-oxoquinoline as purple prisms, m. p. above 400° (from dimethylformamide) (Found: $\mathrm{C}, 55 \cdot 6 ; \mathrm{H}, 4.7$; N, 14.9. $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}_{3} \mathrm{~N}_{2}$ requires C, $55.7 ; \mathrm{H}, 5 \cdot 2 ; \mathrm{N}, 14 \cdot 4 \%$); this compound did not give a positive Liebermann's test. The acetyl derivative, plates, m. p. 137°, from aqueous ethanol (Found: C, 63.9; H, 6.9. $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~N}_{2}$ requires $\mathrm{C}, 64 \cdot 1 ; \mathrm{H}, 6.8 \%$), was soluble in aqueous alkalis. Under Schotten-Baumann conditions, it formed an alkali-insoluble dibenzoyl derivative [prisms, m. p. 158-159 ${ }^{\circ}$, from ethanol (Found: C, 74.6; H, 5.7; N, 7.8. $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{~N}_{2}$ requires $\mathrm{C}, 74 \cdot 2 ; \mathrm{H}, 5 \cdot 4 ; \mathrm{N}, 7 \cdot 5 \%$)].

2-Amino-4-hydroxyquinoline was apparently unaffected on treatment with benzoyl chloride under Schotten-Baumann conditions, but on being warmed with benzoyl chloride gave a monobenzoyl derivative hydrochloride (50%), prisms, m. p. 191-192 (from methanol-benzene) (Found: $\mathrm{C}, 64.0$; H, 4.5 ; N, 9.1. $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{O}_{2} \mathrm{~N}_{2} \mathrm{Cl}$ requires $\mathrm{C}, 63.9 ; \mathrm{H}, 4.4 ; \mathrm{N}, 9.3 \%$); the free (N - or O -)benzoyl derivative formed prisms, m. p. 121-123 ${ }^{\circ}$, from benzene-light petroleum (Found: C, 72.7; H, 4.7; N, 10.2. $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{~N}_{2}$ requires $\mathrm{C}, \mathbf{7 2 . 7} ; \mathrm{H}, \mathbf{4 . 6} ; \mathrm{N}, \mathbf{1 0 . 6} \%$). This compound readily formed 2 -amino-4-hydroxyquinoline with aqueous alkali.

3-Bromo-2 : 4-dichloroquinoline.-3-Bromo-2 : 4-dihydroxyquinoline ${ }^{8}$ when boiled with phosphorus oxychloride for 6 hr . furnished the 2:4-dick.loroquinoline (87%), needles (from ethanol), m. p. 95°, b. p. $157-158^{\circ} / 1.5 \mathrm{~mm}$. (Found: C, $39 \cdot 4 ; \mathrm{H}, 1 \cdot 6$; halogen, $54 \cdot 5$. $\mathrm{C}_{9} \mathrm{H}_{4} \mathrm{NCl}_{2} \mathrm{Br}$ requires C, $39 \cdot 0 ; \mathrm{H}, \mathrm{l} \cdot 5$; halogen, $54 \cdot 5 \%$).

2: 4-Dihydroxyquinoline.-(i) 3-Bromo-2: 4-dihydroxyquinoline (20.6 g .) in 10% aqueous sodium hydroxide (600 ml .) was heated at 90° with Raney alloy ${ }^{5}\left(75 \mathrm{~g}\right.$.) during $2 \frac{1}{2} \mathrm{hr}$., stirring was continued for a further 1 hr ., and the mixture was filtered. On acidification, the filtrate yielded 2: 4-dihydroxyquinoline (10.6 g ., 77%) which was identified as its monoacetate, m. p. and mixed m. p. 214-215 . This reduction could not be effected with sodium and ethanol, or sodium and isopentyl alcohol.
(ii) 2-Amino-4-hydroxyquinoline was fused at $250-290^{\circ}$ with potassium hydroxide for 3 hr .; the acid-insoluble fraction recovered from the melt gave 2: 4-dihydroxyquinoline (37%), which was characterised as its monoacetate. This hydrolysis could not be effected with potassium hydroxide in water or in ethylene glycol.

1:2:3:4-Tetrahydroquinoline.-(i) Quinoline on being reduced with Raney alloy ${ }^{4,5}$ gave its 1:2:3:4-tetrahydro-derivative (87%) which was characterised as its picrate, ${ }^{8} \mathrm{~m}$. p. $141.5-143.5^{\circ}$, and its benzoyl derivative, ${ }^{10} \mathrm{~m} . \mathrm{p} .76^{\circ}$.

[^2](ii) 2:4-Dichloroquinoline, reduced in the same way, ${ }^{4,5}$ yielded quinoline (4\%), 1:2:3:4tetrahydroquinoline (22%), and unchanged dichloro-compound (44%). When the reduction was effected in the presence of ethanol, in addition to the tetrahydroquinoline (16%), another base, probably 4 -ethoxyquinoline, was recovered as its picyate, m. p. 195° (Found: C, 51.0; $\mathrm{H}, \mathbf{3} \cdot 4 ; \mathrm{N}, 13.9 . \mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{8} \mathrm{~N}_{4}$ requires $\mathrm{C}, 50.8 ; \mathrm{H}, \mathbf{3} \cdot 5 ; \mathrm{N}, 13.9 \%$). Reduction with tin and hydrochloric acid ${ }^{6}$ led to $1: 2: 3: 4$-tetrahydroquinoline (74%) and quinoline (4%).
(iii) 3-Bromo-2:4-dichloroquinoline by the same method ${ }^{6}$ of reduction gave 1:2:3:4tetrahydroquinoline (52%) and quinoline (3%), whereas, with Raney alloy, ${ }^{4,5}$ the products were 2 : 4-dichloroquinoline ${ }^{11}(12 \%)$, m. p. and mixed m. p. 67°, and quinoline (2%).

2-Amino-4-chloroquinoline.-2-Amino-4-hydroxyquinoline ($6 \cdot 4 \mathrm{~g}$.) was refluxed for 8 hr . with phosphorus oxychloride (40 ml .). After removal of the excess of phosphorus oxychloride in vacuo, the solid, phosphorus-containing residue was boiled with water for 1 hr . and basified with sodium hydroxide. The gelatinous chloroquinoline after being collected in chloroform crystallised from benzene-light petroleum as prisms, m. p. 136° (4.4 g., 62\%) (Found: N, 15.3; $\mathrm{Cl}, 19.9 . \quad \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{~N}_{2} \mathrm{Cl}$ requires $\mathrm{N}, 15.7 ; \mathrm{Cl}, 19.9 \%$); it gave a hydrochloride, needles, m. p. 207$208^{\circ}$, from hydrochloric acid (Found: $\mathrm{N}, 12 \cdot 9 . \mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{Cl}_{2}$ requires $\mathrm{N}, 13 \cdot 0 \%$), benzenesulphonate, prisms, m. p. 168°, from aqueous propan- 2 -ol (Found: C, 52.5 ; H, 4.5; N, 7.5 . $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{ClS}, 0.5 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 52 \cdot 1 ; \mathrm{H}, 4 \cdot \mathrm{I} ; \mathrm{N}, 8 \cdot 1 \%$), and picrate, prisms, m. p. 279$280^{\circ}$ (decomp.), from glacial acetic acid (Found: C, 44.4; H, 2.6; N, 16.9; Cl, 8.9. $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{O}_{7} \mathrm{~N}_{5} \mathrm{Cl}$ requires $\left.\mathrm{C}, 44 \cdot 2 ; \mathrm{H}, 2 \cdot 5 ; \mathrm{N}, 17 \cdot 2 ; \mathrm{Cl}, 8 \cdot 7 \%\right)$. The chloroquinoline was stable to hydriodic acid and to aqueous alkali but gave 2 -amino-4-hydroxyquinoline on being boiled with potassium hydroxide in ethylene glycol. When refluxed for 20 hr . with sodium propoxide in propan-1-ol, it furnished 2 -amino-4-n-propoxyquinoline ${ }^{8}$ (78%).

The following benzenesulphonates were prepared: m-chloroanilinium, plates, m. p. $\mathbf{2 0 3}^{\circ}$, from propan-2-ol (Found: $\mathrm{N}, 4 \cdot 8 . \quad \mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{3} \mathrm{NClS}$ requires $\mathrm{N}, 4 \cdot 9 \%$); m-hydroxyanilinium, prisms, m. p. 187.5-188 ${ }^{\circ}$, from methanol-ethyl acetate (Found: C, $54 \cdot 1 ; \mathrm{H}, 4 \cdot 8 . \quad \mathrm{C}_{12} \mathrm{H}_{13} \mathrm{O}_{4} \mathrm{NS}$ requires C, $53.9 ; \mathrm{H}, 4.9 \%$) ; m-methoxyanilinium, needles, m. p. 173.5-174.5 ${ }^{\circ}$, from propan- 2 -ol (Found: C, 55.7; H, 5.3. $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{O}_{4} \mathrm{NS}$ requires C, $55.5 ; \mathrm{H}, 5.4 \%$); m-methylanilinium, plates, m. p. 170°, from propan-2-ol (Found: C, $59.0 ; \mathrm{H}, 5 \cdot 9 . \mathrm{C}_{13} \mathrm{H}_{15} \mathrm{O}_{3} \mathrm{NS}$ requires $\mathrm{C}, 58.9$; H, 5.7\%).

2-A mino-4-hydroxy-5- and -7-methylquinoline.-Ethyl cyanoacetate (22.6 g .) and m-methylanilinium benzenesulphonate (53 g ., 1 mol .) were heated together at 210° for 1 hr . A solution of the chloroform-insoluble fraction of the product in 50% aqueous ethanol deposited the 7 -methylquinolinium benzenesulphonate ($17.6 \mathrm{~g} ., 27 \%$) as elongated prisms, m. p. 289-291 ${ }^{\circ}$ (decomp.) (Found: C, $57.9 ; \mathrm{H}, 4.8 ; \mathrm{N}, 8.3 . \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{4} \mathrm{~N}_{2} \mathrm{~S}$ requires C, $57.8 ; \mathrm{H}, 4.9 ; \mathrm{N}, 8.4 \%$). The free base occurred as solvated needles (from aqueous ethanol), m. p. 331° (decomp.) (Found: $\mathrm{C}, 69.4 ; \mathrm{H}, 5.3$; $\mathrm{N}, 15.8 . \quad \mathrm{C}_{10} \mathrm{H}_{10} \mathrm{ON}_{2}$ requires $\mathrm{C}, 69.0 ; \mathrm{H}, 5.8 ; \mathrm{N}, \mathbf{1 6 . 1} \%$); its picrate, needles from propan-2-ol, had m. p. 275-276 ${ }^{\circ}$ (decomp.) (Found: N, 17.1. $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{O}_{8} \mathrm{~N}_{5}$ requires $\mathrm{N}, 17 \cdot 4 \%$).

On being concentrated, the aqueous ethanolic mother-liquor furnished the benzenesulphonate (19.6 g ., 15%) of the 5 -methyl isomer, which crystallised from propan- 2 -ol as prisms, m. p. 274 275° (decomp.) (Found: C, $57.8 ; \mathrm{H}, 4.7$; N, $8.5 . \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{4} \mathrm{~N}_{2} \mathrm{~S}$ requires $\mathrm{C}, 57.8 ; \mathrm{H}, 4.9$; N , 8.4%). 2-Amino-4-hydroxy-5-methylquinoline crystallised as solvated needles, m. p. 283-284 ${ }^{\circ}$ (decomp.), from aqueous ethanol (Found: C, 69.1; H, 5.4; N, $15 \cdot 8 . \quad \mathrm{C}_{10} \mathrm{H}_{10} \mathrm{ON}_{2}$ requires C , 69.0 ; H, 5.8 ; N, $\mathbf{1 6 . 1} \%$); its picrate, needles, m. p. 258- 259° (decomp.), crystallised from aqueous ethanol (Found: C, 48.1; H, 3.7; N, 17.4. $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{O}_{8} \mathrm{~N}_{5}$ requires $\mathrm{C}, 47.7$; H, 3.3; N, 17.4\%).

2-Amino-3-bromo-4-hydroxy-7-methylquinoline.-2-Amino-4-hydroxy-7-methylquinoline (19.6 g.), treated in boiling glacial acetic acid (300 ml .) with bromine (18 g.), gave the 3 -bromo-hydrobromide ($36.5 \mathrm{~g} ., 97 \%$), which crystallised from glacial acetic acid as needles, m. p. $221-222^{\circ}$ (decomp.) (Found: C, $35 \cdot 8 ; \mathrm{H}, 3.5 . \mathrm{C}_{10} \mathrm{H}_{10} \mathrm{ON}_{2} \mathrm{Br}_{2}$ requires $\mathrm{C}, 36.0 ; \mathrm{H}, 3.0 \%$). The base crystallised from aqueous ethanol as needles, m. p. 285° (decomp.) (Found: C, 47.8; H, 3.6; $\mathrm{N}, 10.8 . \quad \mathrm{C}_{10} \mathrm{H}_{8} \mathrm{ON}_{2} \mathrm{Br}$ requires $\mathrm{C}, 47.3 ; \mathrm{H}, 3.6 ; \mathrm{N}, 11 \cdot 0 \%$); its picrate, needles from aqueous ethanol, had m. p. 238-239 (decomp.) (Found: N, 14.5. $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}_{8} \mathrm{~N}_{5} \mathrm{Br}$ requires $\mathrm{N}, 14 \cdot 5 \%$).

3-Bromo-2: 4-dihydroxy-7-methylquinoline.-Sodium nitrite (24 g.) was gradually stirred into a solution of 2 -amino-3-bromo-4-hydroxy- 7 -methylquinoline (25 g .) in concentrated sulphuric acid (63 ml .) at 0°. Next day, the paste was treated with crushed ice, and the

[^3]precipitate was collected. Crystallisation of the ethanol-soluble fraction from glacial acetic acid gave the 2:4-dihydroxy-derivative ($\mathbf{1 4 . 4} \mathrm{g}$., 57%) as plates, m. p. $254-255^{\circ}$ (decomp.) (Found: $\mathrm{C}, 47.0 ; \mathrm{H}, 3.2$; $\mathrm{N}, 5 \cdot 4 . \quad \mathrm{C}_{10} \mathrm{H}_{8} \mathrm{O}_{2} \mathrm{NBr}$ requires $\mathrm{C}, 47 \cdot 1 ; \mathrm{H}, 3.2 ; \mathrm{N}, 5.5 \%$). On acetylation with acetic anhydride and a trace of pyridine, this dihydroxyquinoline gave a monoacetate, needles, m. p. 242° (decomp.) (from ethanol) (Found: C, 48.9; H, 3.6; N, 4.6. $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{O}_{3} \mathrm{NBr}$ requires $\mathrm{C}, 48 \cdot 7 ; \mathrm{H}, 3.4 ; \mathrm{N}, 4.7 \%$).
$2: 4$-Dihydroxy-7-methylquinoline was obtained (89%) by reduction of the foregoing 3 -bromoquinoline (10.4 g .) in 10% aqueous sodium hydroxide (300 ml .) with Raney alloy (38 g .) at 90° and crystallised from glacial acetic acid as prisms, m. p. above 400° (Found: C, 68.7; H, 5.3; $\mathrm{N}, 7.9 . \mathrm{C}_{10} \mathrm{H}_{9} \mathrm{O}_{2} \mathrm{~N}$ requires $\mathrm{C}, 68 \cdot 6 ; \mathrm{H}, 5 \cdot 2 ; \mathrm{N}, 8 \cdot 0 \%$). Its monoacetate, needles from ethanol, had m. p. 229-230 (decomp.) (Found: C, 66.0; H, 4.8; N, 6.5. $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{O}_{3} \mathrm{~N}$ requires C, 66.4; H, $5 \cdot 1$; $\mathrm{N}, 6.5 \%$).

2:4-Dichloro-7-methylquinoline was produced (6.4 g .) when the dihydroxymethylquinoline (5.5 g .) was boiled with phosphorus oxychloride (25 ml .) for 7 hr . and the mixture was worked up in the usual way; it formed needles, m. p. $107-108^{\circ}$, from methanol (Found: $\mathrm{N}, 6.7$; Cl, 34.1. $\quad \mathrm{C}_{10} \mathrm{H}_{7} \mathrm{NCl}_{2}$ requires $\mathrm{N}, 6 \cdot 6 ; \mathrm{Cl}, 33 \cdot 4 \%$).

1:2:3:4-Tetrahydro-7-methylquinoline was obtained (73%) from the foregoing 2:4-dichloroquinoline by reduction with tin and hydrochloric acid ${ }^{6}$ and characterised by comparison of its benzoyl derivative, m. p. $77-78^{\circ}$, its hydrochloride, m. p. 204-205 ${ }^{\circ}$, and its picrate, $\mathrm{m} . \mathrm{p}$. 156°, with authentic specimens. For this comparison, 7 -methylquinoline (12 g .) in ethanol (300 ml .) and 10% aqueous sodium hydroxide (300 ml .) was reduced at the b. p. during 4 hr . with Raney alloy (35 g .). The tetrahydro-derivative (78%) furnished a picrate, m. p. $154-155^{\circ}$ (decomp.), previously reported ${ }^{12}$ to have m. p. $153-154^{\circ}$. The hydrochloride, prisms, m. p. 204-205 ${ }^{\circ}$, from methanol-ethyl acetate, was prepared from the picrate (Found: C, $65.6 ; \mathrm{H}, 7.8 ; \mathrm{N}, 7.6$. Calc. for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{NCl}: \mathrm{C}, 65.4 ; \mathrm{H}, 7.7 ; \mathrm{N}, 7.6 \%$; the benzoyl derivative, prepared from the hydrochloride, crystallised from light petroleum as prisms, m. p. $77-78^{\circ}$ (Found: C, $81 \cdot 2 ; \mathrm{H}, 6.9$; N, 5.5 . Calc. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{ON}: \mathrm{C}, 81 \cdot 2 ; \mathrm{H}, 6.8 ; \mathrm{N}, 5 \cdot 6 \%$). Previously reported ${ }^{12}$ values for these m. p.s are 175° and $70-72^{\circ}$ respectively. The 7 -methylquinoline was authenticated ${ }^{13}$ as its picrate, m. p. 242°, and styphnate, m. p. 242°.

2-Amino-4-hydroxy-7-methoxyquinoline.-The benzenesulphonate of this base separated from a chloroform solution of the product of interaction of m-methoxyanilinium benzenesulphonate and ethyl cyanoacetate (1 mol .) at 210° for 1 hr .; it afforded solvated prisms, m. p. 222°, from water (Found: C, $55 \cdot 4 ; \mathrm{H}, 4 \cdot 2 ; \mathrm{N}, 8.2 . \mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{5} \mathrm{~N}_{2} \mathrm{~S}$ requires $\mathrm{C}, 55 \cdot 2 ; \mathrm{H}, 4 \cdot 6 ; \mathrm{N}, 8.0 \%$); yield 39%. The base, prisms from aqueous ethanol, had m. p. $309-310^{\circ}$ (decomp.) (Found: $\mathrm{C}, 62 \cdot 8 ; \mathrm{H}, 5 \cdot 1 ; \mathrm{N}, 14.4 . \quad \mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{2} \mathrm{~N}_{2}$ requires $\mathrm{C}, 63 \cdot 2 ; \mathrm{H}, 5 \cdot 3 ; \mathrm{N}, 14.7 \%$). Its 3 -bromoderivative, prepared in the usual way, crystallised as needles, m. p. 283° (decomp.), from aqueous lactic acid (Found: C, 44.9; H, 3.7; N, 10.4. $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{O}_{2} \mathrm{~N}_{2} \mathrm{Br}$ requires C, 44.6; H, 3.4; N, 10.4%) and gave a hydrobromide as needles, m. p. $231-232^{\circ}$ (decomp.), from glacial acetic acid (Found: $\mathrm{C}, 34 \cdot 1 ; \mathrm{H}, 3.1 ; \mathrm{N}, 8.0 . \mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{2} \mathrm{~N}_{2} \mathrm{Br}_{2}$ requires C, $34 \cdot 3 ; \mathrm{H}, 2.9 ; \mathrm{N}, 8.0 \%$).

2-Amino-4-chloro-7-methoxyquinoline.-2-Amino-4-hydroxy-7-methoxyquinoline (30.5 g.) was boiled with phosphorus oxychloride (150 ml .) for 8 hr . The solid obtained by evaporation, when boiled for 90 min . with 25% aqueous hydrochloric acid (300 ml .), gave the hydrochloride which crystallised as solvated prisms, m. p. 210° (decomp.), from dilute hydrochloric acid (Found: C, $48.8 ; \mathrm{H}, 4 \cdot 3 ; \mathrm{N}, 11 \cdot 4 ; \mathrm{Cl}, 28.2 . \mathrm{C}_{10} \mathrm{H}_{10} \mathrm{ON}_{2} \mathrm{Cl}_{2}$ requires $\mathrm{C}, 49.0 ; \mathrm{H}, 4 \cdot 1 ; \mathrm{N}, 11 \cdot 4$; $\mathrm{Cl}, 28.9 \%$). On basification, this salt furnished the chloroquinoline (28 g ., 87%), prisms (from benzene), m. p. 200° (Found: C, 57.8 ; H, 4.3; N, 13.4; Cl, 16.7. $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{ON}_{2} \mathrm{Cl}$ requires C , $57.5 ; \mathrm{H}, 4.4 ; \mathrm{N}, 13.4 ; \mathrm{Cl}, 17 \cdot 0 \%)$. This compound could not be brought into reaction with aniline. Its picrate, dark red prisms from 2-ethoxyethanol, had m. p. 270° (decomp.) (Found: $\mathrm{C}, 43 \cdot 7 ; \mathrm{H}, 2 \cdot 9 ; \mathrm{Cl}, 7 \cdot 6 . \quad \mathrm{C}_{18} \mathrm{H}_{12} \mathrm{O}_{8} \mathrm{~N}_{5} \mathrm{Cl}$ requires $\left.\mathrm{C}, 43 \cdot 9 ; \mathrm{H}, 2 \cdot 8 ; \mathrm{Cl}, 8 \cdot 1 \%\right)$.

4-Chloro-2-hydroxy-7-methoxyquinoline.-The foregoing 2 -amino-derivative (10 g .) in icecold, concentrated sulphuric acid (30 ml .) was treated with sodium nitrite (10 g.). Next day, the mixture, when added to crushed ice, furnished 4-chloro-2-hydroxy-7-methoxyquinoline (68\%) which crystallised from ethanol as needles, m. p. 252° (Found: C, $57.3 ; \mathrm{H}, 3.6 ; \mathrm{N}, 6.6$. $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{O}_{2} \mathrm{NCl}$ requires $\mathrm{C}, 57 \cdot 3 ; \mathrm{H}, 3 \cdot 8 ; \mathrm{N}, 6 \cdot 7 \%$).

2: 4-Dichloro-7-methoxyquinoline was produced (95%) when 4-chloro-2-hydroxy-7-methoxyquinoline was boiled with phosphorus oxychloride for 16 hr .; it formed needles, m. p. 132-133 ${ }^{\circ}$,

[^4]from ethanol (Found: $\mathrm{C}, 52.6 ; \mathrm{H}, \mathbf{3 . 1} ; \mathrm{Cl}, \mathbf{3 0 . 9} . \mathrm{C}_{\mathbf{1 0}} \mathrm{H}_{7} \mathrm{ONCl}_{2}$ requires $\mathrm{C}, 52 \cdot 7 ; \mathrm{H}, \mathbf{3 . 1}$; $\mathrm{Cl}, 3 \mathrm{I} \cdot 1 \%$).

I: 2: 3: 4-Tetrahydro-7-methoxyquinoline.-(i) 7-Methoxyquinoline (10.3 g .) was heated on a steam-bath for 21 hr . with tin (50 g .) and concentrated hydrochloric acid (130 ml .). Excess of alkali was added; the steam-volatile material, after isolation and fractionation, afforded I: 2: 3: 4-tetrahydro-7-methoxyquinoline (3.4 g ., 32%), b. p. $127-128^{\circ} / 1.8 \mathrm{~mm}$. (Found: C, $73.7 ; \mathrm{H}, 7.9 ; \mathrm{N}, 8.7 . \mathrm{C}_{10} \mathrm{H}_{13} \mathrm{ON}$ requires $\left.\mathrm{C}, 73.6 ; \mathrm{H}, 8.0 ; \mathrm{N}, 8.6 \%\right)$. Its benzoyl derivative crystallised from light petroleum (b. p. $40-60^{\circ}$) as prisms, m. p. $81-82^{\circ}$ (Found: C, 76.4 ; H, $6.3 ; \mathrm{N}, 5 \cdot 4$. $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{O}_{2} \mathrm{~N}$ requires $\mathrm{C}, 76.4 ; \mathrm{H}, 6.4 ; \mathrm{N}, 5.2 \%$), its hydrochloride as prisms, m. p. 181°, from methanol-ethyl acetate (Found: $\mathrm{C}, 60 \cdot 2 ; \mathrm{H}, 6 \cdot 6 . \mathrm{C}_{10} \mathrm{H}_{14} \mathrm{ONCl}$ requires C , 60.1; $\mathrm{H}, 7 \cdot 1 \%$), and its picrate as rods, m. p. 156° (decomp.), from ethanol (Found: C, $48.9 ; \mathrm{H}, 4 \cdot 2$; $\mathrm{N}, 14 \cdot 2 . \quad \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{8} \mathrm{~N}_{4}$ requires $\mathrm{C}, 49 \cdot 0 ; \mathrm{H}, 4 \cdot 1 ; \mathrm{N}, 14 \cdot 3 \%$). The non-volatile material was collected in ether and recovered; its basic fraction, after being extracted with acid and reprecipitated, gave on fractional crystallisation from benzene-light petroleum a less-soluble substance as solvated prisms, m. p. $170-178^{\circ}$ [Found: C, $74.8 ; \mathrm{H}, 7.0 ; \mathrm{N}, 8.1 \%$; M (Rast), 657. $\mathrm{C}_{40} \mathrm{H}_{46} \mathrm{O}_{4} \mathrm{~N}_{4}$ requires $\left.\mathrm{C}, 74.3 ; \mathrm{H}, 7.2 ; \mathrm{N}, 8.7 \% ; M, 646\right]$, and a more-soluble substance as prisms, m. p. $99-107^{\circ}$ [Found: C, $74 \cdot 5 ; \mathrm{H}, 7 \cdot 3 ; \mathrm{N}, 8 \cdot 2 \%$; M (Rast), 326. $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{~N}_{2}$ requires $\mathrm{C}, 74 \cdot 0 ; \mathrm{H}, 7 \cdot 5 ; \mathrm{N}, 8.6 \% ; M, 324]$. Both these compounds gave, after treatment with nitrous acid, a positive Liebermann's test.

The 7 -methoxyquinoline was characterised as its picrate, m. p. 234- 235°, oxalate, m. p. 120°, and dichromate, m. p. 203°. Bradford, Elliott, and Rowe ${ }^{13}$ record m. p. $229^{\circ}, 126^{\circ}$, and 210° respectively for these salts.
(ii) 2: 4-Dichloro-7-methoxyquinoline, reduced by the same method, furnished the same tetrahydromethoxyquinoline in 35% yield, the identity being confirmed by the m. p. and mixed m . p. of the benzoyl derivatives, hydrochlorides, and picrates.

2-Amino-4:7-dihydroxyquinoline.-(i) The product of interaction of m-hydroxyanilinium benzenesulphonate (53.4 g .) and ethyl cyanoacetate (22.6 g .) at 210° for 1 hr ., on prolonged digestion with acetone, gave a solid which, after basification, removal of ethanol-soluble impurities, purification via its hydrochloride, and crystallisation from ethanol afforded 2-amino-4:7-dihydroxyquinoline (9.4 g., 27%) as solvated prisms, m. p. $400-401^{\circ}$ (decomp.) (Found: $\mathrm{C}, 61.2 ; \mathrm{H}, 4.5 ; \mathrm{N}, 16.1$. $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{2} \mathrm{~N}_{2}$ requires $\mathrm{C}, 6 \mathrm{I} \cdot 4 ; \mathrm{H}, 4.6 ; \mathrm{N}, 15.9 \%$. Its hydrochloride formed solvated needles, m. p. 297-298 (decomp.), from dilute hydrochloric acid (Found: $\mathrm{C}, 50.9 ; \mathrm{H}, 4.6 ; \mathrm{N}, 12.7 . \quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{O}_{2} \mathrm{~N}_{2} \mathrm{Cl}$ requires $\mathrm{C}, 50.9 ; \mathrm{H}, 4.3 ; \mathrm{N}, 13.2 \%$) and its picrate, solvated prisms from aqueous ethanol, had m. p. 283° (decomp.) (Found: $\mathrm{C}, 44.6$; $\mathrm{H}, \mathbf{2 . 8}$. $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{O}_{9} \mathrm{~N}_{5}$ requires $\mathrm{C}, 44 \cdot 5 ; \mathrm{H}, 2.7 \%$).
(ii) 2-Amino-4-hydroxy-7-methoxyquinoline was boiled for 10 hr . with 55% hydriodic acid; from the reaction mixture there was recovered a base (91%), m. p. $400-401^{\circ}$ (decomp.), which yielded a hydrochloride, m. p. 297-298 (decomp.), and a picrate, m. p. 283° (decomp.), all undepressed on appropriate admixture with the foregoing compounds.

2-Amino-4-chloro-7-hydroxyquinoline was obtained (97\%) as its hydrochloride when 2-amino-4: 7-dihydroxyquinoline was boiled with phosphorus oxychloride for 11 hr . and the mixture was worked up as described for the corresponding 7 -methoxyquinoline; it crystallised as solvated prisms, m. p. 282-283 ${ }^{\circ}$ (decomp.), from dilute hydrochloric acid (Found: C, 47.1; $\mathrm{H}, 3 \cdot 7 ; \mathrm{N}, 12.3 ; \mathrm{Cl}, 30.9$. $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{ON}_{2} \mathrm{Cl}_{2}$ requires $\mathrm{C}, 46 \cdot 8 ; \mathrm{H}, 3.5 ; \mathrm{N}, 12 \cdot 1$; $\mathrm{Cl}, 30.7 \%$); the base formed solvated prisms, m. p. 226°, from aqueous ethanol (Found: $\mathrm{N}, 14 \cdot 3 ; \mathrm{Cl}, 17.5$. $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{ON}_{2} \mathrm{Cl}$ requires $\mathrm{N}, 14.4 ; \mathrm{Cl}, 18 \cdot 2 \%$), the benzenesulphonate prisms, m. p. $209-210^{\circ}$, from propan-2-ol (Found: C, $50.7 ; \mathrm{H}, 3.6 ; \mathrm{N}, 7.5 ; \mathrm{Cl}, 10 \cdot 1 . \mathrm{C}_{15} \mathrm{H}_{13} \mathrm{O}_{4} \mathrm{~N}_{2} \mathrm{ClS}$ requires $\mathrm{C}, 51 \cdot 1$; H , $3.7 ; \mathrm{N}, 7.9$; $\mathrm{Cl}, 10.1 \%$), and the picrate prisms, m. p. $290-291^{\circ}$ (decomp.), from aqueous ethanol (Found: $\mathrm{N}, 16.4 ; \mathrm{Cl}, 8.4 . \quad \mathrm{C}_{15} \mathrm{H}_{10} \mathrm{O}_{8} \mathrm{~N}_{5} \mathrm{Cl}$ requires $\mathrm{N}, 16.5 ; \mathrm{Cl}, 8.4 \%$).

The same base was obtained ($c a .100 \%$) when 2 -amino-4-chloro- 7 -methoxyquinoline was boiled with constant-boiling hydriodic acid for 8 hr . and the mixture was basified. The identity was confirmed by comparison of the hydrochlorides and picrates.

When 2-amino-4-chloro-7-hydroxyquinoline was boiled for 10 hr . with 20% potassium hydroxide in ethylene glycol, 2-amino-4 : 7-dihydroxyquinoline (57%) was produced.

2-Amino-5- and -7-chloro-4-hydroxyquinoline.-The cooled melt obtained after heating together m-chloroanilinium benzenesulphonate (129 g .) and ethyl cyanoacetate (51 g .) for 90 min . at 210° was digested with chloroform for 24 hr . 2-Amino-7-chloro-4-hydroxyquinolinium benzenesulphonate ($35 \mathrm{~g} ., 22 \%$) which separated from the cold solution gave prisms, m. p.
$272-273^{\circ}$, after recrystallisation from aqueous ethanol (Found: C, $51 \cdot 2 ; \mathrm{H}, 3.5 ; \mathrm{N}, 7 \cdot 3$. $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{O}_{4} \mathrm{~N}_{2} \mathrm{ClS}$ requires $\mathrm{C}, 51 \cdot 1 ; \mathrm{H}, 3.7 ; \mathrm{N}, 7.9 \%$) ; the base formed rods, m. p. 348-349 ${ }^{\circ}$ (decomp.), from aqueous ethanol (Found: $\mathrm{C}, 55 \cdot 9 ; \mathrm{H}, 3.8 . \mathrm{C}_{9} \mathrm{H}_{7} \mathrm{ON}_{2} \mathrm{Cl}$ requires C , 55.5 ; $\mathrm{H}, 3 \cdot 6 \%$), and the picrate prisms, m. p. $290-291^{\circ}$ (decomp.), from aqueous ethanol (Found: $\mathrm{N}, 16 \cdot 2 . \mathrm{C}_{15} \mathrm{H}_{10} \mathrm{O}_{8} \mathrm{~N}_{5} \mathrm{Cl}$ requires $\mathrm{N}, 16.5 \%$). At 5°, the chloroform mother-liquor deposited 2-amino-5-chloro-4-hydroxyquinolinium benzenesulphonate (7 g., 4\%) which crystallised from aqueous ethanol as prisms, m. p. 280° (decomp.), depressed to $240-252^{\circ}$ by the 7 -isomer (Found: C, $51.3 ; \mathrm{H}, 3.6 ; \mathrm{N}, 8.3 . \quad \mathrm{C}_{15} \mathrm{H}_{13} \mathrm{O}_{4} \mathrm{~N}_{2} \mathrm{ClS}$ requires $\mathrm{C}, 51.1 ; \mathrm{H}, 3.7 ; \mathrm{N}, 7.9 \%$); this yielded the base, plates (from aqueous ethanol), m. p. $352-353^{\circ}$ (decomp.), depressed to $310-$ 313° (decomp.) by the 7 -isomer (Found: $\mathrm{C}, 55 \cdot 4 ; \mathrm{H}, \mathbf{3 . 7} ; \mathrm{N}, 14 \cdot 1 . \mathrm{C}_{9} \mathrm{H}_{7} \mathrm{ON}_{2} \mathrm{Cl}$ requires C , $55.5 ; \mathrm{H}, 3.6 ; \mathrm{N}, 14.4 \%$), and picrate, needles, m. p. $243-244^{\circ}$ (decomp.), from aqueous ethanol (Found: $\mathrm{C}, 42.8 ; \mathrm{H}, 2.8 . \quad \mathrm{C}_{15} \mathrm{H}_{10} \mathrm{O}_{8} \mathrm{~N}_{5} \mathrm{Cl}$ requires $\mathrm{C}, 42.5 ; \mathrm{H}, 2.4 \%$).

7-Chloro-3 : 4-dihydro-2-hydroxy-3-hydroxyimino-4-oxoquinoline.—Sodium nitrite (5 g.) was gradually stirred into a solution of 2 -amino-7-chloro-4-hydroxyquinoline ($4 \cdot 9 \mathrm{~g}$.) in concentrated sulphuric acid (22 ml .) at 0°. Next day, the paste was mixed with ice. The glacial acetic acid-soluble fraction of the precipitated material afforded with sodium hydroxide a green sodium salt which, after decomposition with dilute hydrochloric acid and crystallisation from glacial acetic acid, gave the required 2 -hydroxy-3-hydroxyimino-derivative as green-yellow prisms, m. p. 233° (decomp.) ($2.7 \mathrm{~g} ., 48 \%$) (Found: C, 48.1 ; H, 2.4; N, 12.3 ; Cl, $15 \cdot 1$. $\mathrm{C}_{9} \mathrm{H}_{5} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{Cl}$ requires $\left.\mathrm{C}, 48 \cdot \mathrm{I} ; \mathrm{H}, 2 \cdot 2 ; \mathrm{N}, 12 \cdot 5 ; \mathrm{Cl}, 15 \cdot 8 \%\right)$.

6-Chloroisatin.-The foregoing oxoquinoline (1.8 g .) when boiled with 30% sulphuric acid (70 ml .) for 1 hr . furnished 6 -chloroisatin ($1.1 \mathrm{~g} ., 75 \%$) which crystallised from dilute sulphuric acid as orange prisms, m. p. 256.5-258 ; Senear et al. $\mathbf{1 4}^{14}$ record m. p. 258- 259° (Found: C, $52.4 ; \mathrm{H}, 2.4 ; \mathrm{N}, 8.0$. Calc. for $\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{2} \mathrm{NCl}: \mathrm{C}, 52.9 ; \mathrm{H}, 2 \cdot 2 ; \mathrm{N}, 7.7 \%$). On oxidation with hydrogen peroxide, ${ }^{15}$ this isatin gave 4 -chloroanthranilic acid, ${ }^{16} \mathrm{~m}$. p. and mixed m. p. 236$237^{\circ}$ (decomp.); reduction of the diazonium salt derived from this amine with hypophosphorous acid furnished p-chlorobenzoic acid, m. p. and mixed m. p. 242-243 ${ }^{\circ}$.

2-Amino-4:7-dichloroquinoline was prepared (81%) as its hydrochloride from 2-amino-7-chloro-4-hydroxyquinoline and phosphorus oxychloride and formed needles, m. p. 246.5$247.5^{\circ}$, from dilute hydrochloric acid (Found: C, $43.5 ; \mathrm{H}, 3 \cdot 1$; N, $11 \cdot 5 . \mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}_{2} \mathrm{Cl}_{3}$ requires C, $43.3 ; \mathrm{H}, 2.8 ; \mathrm{N}, 11.2 \%$); this afforded the base, needles, m. p. $201-202^{\circ}$, from benzene (Found: $\mathrm{N}, 13 \cdot 5 ; \mathrm{Cl}, 33 \cdot 6 . \quad \mathrm{C}_{9} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{Cl}_{2}$ requires $\mathrm{N}, 13 \cdot 2 ; \mathrm{Cl}, 33 \cdot 3 \%$), and picrate, needles, $\mathrm{m} . \mathrm{p}$. 285-286 ${ }^{\circ}$ (decomp.), from glacial acetic acid (Found: C, $40.8 ; \mathrm{H}, 2 \cdot 0 ; \mathrm{N}, 15 \cdot 5 ; \mathrm{Cl}, 16.4$. $\mathrm{C}_{15} \mathrm{H}_{9} \mathrm{O}_{7} \mathrm{~N}_{5} \mathrm{Cl}_{2}$ requires $\mathrm{C}, 40 \cdot 7 ; \mathrm{H}, 2 \cdot 1 ; \mathrm{N}, 15 \cdot 8 ; \mathrm{Cl}, 16 \cdot 0 \%$). The hydroxyl group in 2 -amino-4-chloro-7-hydroxyquinoline was not attacked by phosphorus oxychloride, phosphorus pentachloride, and cetyltrimethylammonium bromide. ${ }^{17}$

The authors gratefully acknowledge their indebtedness to Mr. E. C. Wilmshurst and Miss M. E. Thompson, Boots Pure Drug Co., Ltd., for the biological tests.

The University, Nottingham.

[Received, August 13th, 1957.]
14 Senear, Sargent, Mead, and Koepfli, J. Amer. Chem. Soc., 1946, 68, 2695.
15 Mayer and Schulze, Ber., 1925, 58, 1465.
${ }^{16}$ Cohn, Monatsh., 1901, 22, 473.
${ }^{17}$ Cairns and Kermack, J., 1950, 1322.

[^0]: * Part V, J., 1957, 2888.
 ${ }^{1}$ Hardman and Partridge, $J ., 1954,3878$.
 ${ }^{2}$ Kretschy, Monatsh., 1883, 4, 156; 1884, 5, 16.
 ${ }^{3}$ Cavallito and Haskell, J. Amer. Chem. Soc., 1944, 66, 1166.
 ${ }^{4}$ Cf. Papa, Schwenk, and Breiger, J. Org. Chem., 1949, 14, 366.
 ${ }^{5}$ Cf. Schwenk, Papa, and Ginsberg, Ind. Eng. Chem. Anal., 1943, 15, 576.
 ${ }^{6}$ Gabriel and Thieme, Ber., 1919, 52, 1079.

[^1]: ${ }^{7}$ Lahey, Lamberton, and Price, Austral. J. Sci. Res., 1950, A, 3, 155.

[^2]: ${ }^{8}$ Hardman and Partridge, J., 1955, 510.
 ${ }^{9}$ Ishii, J. Pharm. Soc. Japan, 1952, 122, 1317.
 ${ }^{10}$ Hoffmann and Königs, Ber., 1883, 16, 727.

[^3]: ${ }^{11}$ Friedländer and Weinberg, Ber., 1882, 15, 2679.

[^4]: ${ }^{12}$ von Braun, Gmelin, and Schultheiss, Ber., 1923, 56, 1338.
 ${ }^{13}$ Bradford, Elliott, and Rowe, J., 1947, 437.

